Список использованных источников

- 1. Коринец И. Ф. Номограммы для определения режимов дуговой сварки в углекислом газе / И. Ф. Коринец, Ю.И. Охай // Автоматическая сварка. 1995. № 10. С. 46-48.
- 2. К аналитическому определению основных параметров режимов механизированной сварки в среде защитных газов // Сб. наук. праць Національного університету кораблебудування (НУК). -2006. -№ 1 (406). -C.68-79.
- 3. Петриенко О. И. Влияние тепловых и электрических процессов на режимы механизированной сварки сталей в защитных газах: дис.... канд техн. наук: 05.03.06 / O. И. Петриенко. К., 2006. 176 с.
- 4. Пентегов И. В. Расчет распределения температуры по длине вылета электрода с учетом тепла, поступающего от капли / И. В. Пентегов, О. И. Петриенко // Автоматическая сварка. -2003. -№ 7. C. 23-28.
- 5. Шейнкин М. 3. Определение допустимого вылета тонкой электродной проволоки при сварке в углекислом газе / М. 3. Шейнкин // Сварочное производство. 1978. № 9. С. 24-28.
- 6. Пентегов И. В. Метод определения температуры проволоки на выходе из мундштука при дуговой сварке в защитных газах / И. В. Пентегов, О. И. Петриенко // Автоматическая сварка. 2005. № 10. С. 25-28.
 - 7. Кирьянов Д. В. MathCAD 14 / Д. В. Кирьянов. СПб.: БХВ-Петербург, 2007. 704 с.
- 8. Определение падения напряжения в области контакта электродной проволоки с мундштуком сварочной горелки при механизированных видах дуговой сварки / И. В. Пентегов, О. И. Петриенко, С. В. Пустовойт, В. Н. Сидорец, А. В. Лавренюк // Автоматическая сварка. − 2005. − № 6. − С. 12-17.
- 9. Nakamura T., Hiraoka K. Wire Melting Behavior by Non-Steady Heat Conduction Numerical Analysis in Gas Metal Arc Welding // Quarterly of the Japan weld Sosiety. $-2002. \text{Vol.}\ 20. \text{N}_2\ 1. \text{P.}\ 53-62.$
- 10. Пентегов И. В. Метод расчета падения напряжения по длине вылета электрода с учетом нелинейности теплофизических параметров / И. В. Пентегов, О. И. Петриенко // Автоматическая сварка. -2002. -№ 4. -C. 30-33.
- 11. Петриенко О. И. Влияние тепловых и электрических процессов на режимы механизированной сварки сталей в защитных газах: автореф. дис. ... канд. техн. наук: 05.03.06 // О. И. Петриенко; АН Украины. Ин-т электросварки им. Е. О. Патона. К., 2006. 25 с.

УДК 621.793.71

В.В. Спихтаренко, доцент

С.А. Лой, инженер

Херсонский филиал Национального университета кораблестроения, г. Херсон, Украина

С.В. Олексиенко, канд. техн. наук

Черниговский государственный технологический университет, г. Чернигов, Украина

ИСПОЛЬЗОВАНИЕ ГАЗА-ЗАМЕНИТЕЛЯ ПРИ ГАЗОПЛАМЕННОМ НАПЫЛЕНИИ САМОФЛЮСУЮЩИХСЯ СПЛАВОВ

Приведены результаты исследований свойств покрытий, полученных газопламенным напылением с использованием горючих газов (ацетилен, пропан, $MA\Phi$). Определены твердость, коэффициент использования материала (КИМ), прочность сцепления покрытия с основой.

Ключевые слова: ацетилен, МАФ, газопламенное напыление, самофлюсующийся сплав, прочность сцепления, твердость.

Наведені результати досліджень властивостей покриттів, отриманих газополуменевим напилюванням з використанням горючих газів (ацетилен, пропан, МАФ). Визначені твердість, коефіцієнт використання матеріалу (КВМ), міцність зчеплення покриття з основою.

Ключові слова: ацетилен, МАФ, газополуменеве напилення, самофлюсуючий сплав, міцність зчеплення, твердість. Results of researches of properties of the coverings received by a flame spraying with use of combustible gases (an acetylene, propane, MAF) are resulted. Hardness, thermal spraying deposition efficiency, bonding strength are defined. Key words: acetylene, MAF, flame spraying, self-fluxing alloy, bonding strength, hardness.

Постановка проблемы. Дальнейшее развитие научно-технического прогресса вызывает интенсификацию работы машин, заставляет искать и внедрять все более эффективные техно-

логии восстановления и упрочнения деталей. Проблема снижения материалоемкости продукции, усиления режима экономии остается актуальной. В этой связи происходит расширение сферы применения газотермического напыления покрытий из самофлюсующихся сплавов.

В последнее время на рынке горючих газов появился уникальный энергетический продукт — газ МАФ (метилацетилен-алленовая фракция). Температура пламени при сгорании МАФ в кислороде составляет 2927 °C, что позволяет применять его как заменитель ацетилена в технологических процессах газопламенной обработки металлов. Однако отсутствие данных о свойствах покрытий, полученных с использованием МАФ, не позволяет реализовать технологию нанесения покрытий. Поэтому проведение исследований свойств покрытий полученных с использованием газа МАФ с целью разработки технологий является актуальным.

Анализ последних достижений и публикаций. Известен опыт применения газа МАФ для выполнения сварочных работ. Так, в ИЭС им. Е.О. Патона и ОАО "Черкассыгаз" разработаны рекомендации по его применению при строительстве и ремонте газопроводов, подведомственных ДНАОП [1].

Оценка качества сварных швов показала, что в них отсутствуют дефекты в виде оксидных пленок, включений между слоями и по границе сплавления, а размеры, форма, количество и распределение неметаллических включений такие же, как и при сварке с использованием ацетилена и сварочной проволоки Св-08А. В зоне термического влияния отсутствует заметный перегрев металла.

Также использование газа МАФ для напыления и сварки низкоуглеродистых сталей апробировано на КСП "Лидер" (г. Херсон) и получены удовлетворительные результаты.

Цель статьи. Целью работы является разработка основ технологии нанесения газотермических покрытий с использованием газа ${\rm MA\Phi}$, обеспечивающих снижение стоимости работ.

Изложение основного материала. Обычно напыление производится газопламенным методом с использованием ацетилено-кислородного пламени [1; 5].

Для газопламенного напыления газом МАФ можно использовать стандартные горелки ГН-2 и ГН-3, укомплектованные мундштуками № 3 и № 4. Поскольку температура пламени газа МАФ ниже температуры ацетилено-кислородного пламени, то для получения более устойчивой работы горелки, особенно при подаче порошка в газовую струю, повышения тепловой мощности пламени и производительности необходимо изменить геометрию выходного отверстия мундштука горелки [2].

Для газотермического напыления пропано-бутано-кислородными смесями горелка ГН-3 была модернизирована в соответствии с рекомендациями работы [7] (изменена конструкция наконечника, рассчитано и увеличено проходное сечение каналов в инжекторе и смесительной камере).

В качестве напыляемого материала использовали самофлюсующийся порошок ПГ-10H-01 (выпускаемый ОАО Торезтвердосплав по ГОСТ 21448-75 и ТУ У 322-19-004-96) системы Ni-Cr-B-Si [6]. Перед напылением порошок просушивали при температуре 120...150 °С в течение 50...60 минут.

С целью определения возможных изменений напыленного слоя, а также некоторых его физико-механических свойств проведены исследования свойств покрытий.

Микроструктура напыленного слоя изучалась с помощью микроскопа МИМ-7 на шлифах, вырезанных из образцов, напыленных порошком ПГ-10H-01 с использованием смесей: ацетилено-кислородной, пропано-кислородной газовых смесей и МА Φ с кислородом.

Для всех покрытий характерна хорошая граница контакта с подложкой. В них образуются разобщенные газовые шлаковые боросиликатные включения сферической формы. Количество пор и шлаковых тел для всех способов напыления примерно одинако-

вое. На рисунке 1 видна дендритоподобная структура γ -твердого раствора на основе никеля, междендритное пространство которого заполнено частицами боридов Ni₃B и карбидов хрома Cr₂₃C₆, Cr₇C₃ [8].

Прочность сцепления покрытия (адгезию) определяли методом сдвига [4]. Образцы напыляли на цилиндрическую заготовку диаметром 20 мм. Толщина напыленного слоя около 3 мм. Напыленный слой обтачивали до диаметра 24 мм. В нанесенном слое делали проточки до основного металла (диаметр 20 мм) для разделения напыленного слоя на отдельные кольца шириной 2 мм, после этого образцы испытывали на прочность сцепления на срез.

Испытания проводили на разрывной машине Р-20 производства Армавирского завода испытательных машин.

Средние значения прочности сцепления для десяти образцов каждой партии приведены в таблице 1.

Таблица 1 Прочность сцепления покрытия с основой в зависимости от метода напыления

Метод напыления	Напряжение сдвига, <i>МПа</i>
Газопламенный (ацетилен-кислород)	380
Газопламенный (МАФ-кислород)	390
Газопламенный (пропан-кислород)	400

Рис. 1. Структура напыленного и оплавленного газопламенного покрытия c использованием горючего газа $MA\Phi$, $\times 200$

Средние значения адгезии 390 $M\Pi a$ позволяет сделать заключение об их высокой динамической прочности.

Одним из показателей, характеризующих качество процесса напыления покрытия, является коэффициент использования материала (КИМ), представляющий собой отношение массы материала, нанесенного на поверхность детали, к массе материала, поступившего в пламя горелки.

Для определения влияния гранулометрического состава напыляемого порошка [3] на величину КИМ порошок ПГ-10H-01 просеивали через набор сеток по ГОСТ 6613-73, в результате чего были получены следующие фракции по размерам частиц от 0 мкм до 120 мкм и более:

от 0 до 40	7 % (поставка завода);
от 40 до 60	30 % (поставка завода);
от 60 до 120	60 % (поставка завода);
более 120	3 % (поставка завода).

Напыление образцов проводили газопламенным методом с использованием горючих газов (ацетилен, пропан-бутан и МАФ в смеси с кислородом) фиксированной навеской поро-

шка (30 ε), после чего образцы взвешивались на аналитических весах типа АДВ-200 с погрешностью $1 \cdot 10^{-6} \, H$. Результаты обработки полученных данных приведены на рисунке 2.

Исследования показали, что использование пропан-бутана в качестве горючего газа целесообразно при напылении порошков грануляцией до 100 мкм, так как коэффициент его использования выше, чем при применении ацетилена. Это обусловлено тем, что в ацетилено-кислородном пламени мелкие частицы порошка сгорают, не образуя покрытия. Коэффициент использования порошка при напылении фракции более 100 мкм пропан-бутановым пламенем резко снижается, что вызвано недостаточной способностью частиц к образованию покрытия из-за низкой температуры их разогрева. При использовании газа МАФ коэффициент использования порошка выше (порядка 10 %) чем у ацетилена.

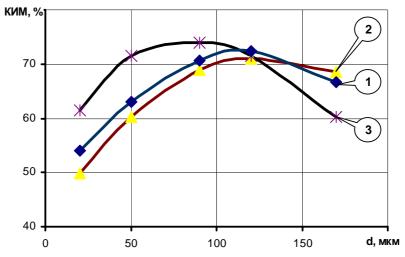


Рис. 2. Зависимость коэффициента использования порошка (КИМ) марки $\Pi\Gamma$ -10H-01 от его грануляции: $1-MA\Phi$; 2 – ацетилен; 3 – пропан-бутан

Для определения влияния размеров частиц напыляемого материала и вида горючего газа на твердость покрытия напылены образцы с толщиной покрытия 1,5...2 мм. Напыление проводили с одновременным оплавлением. После охлаждения образцы обрабатывали на шлифовальном станке. Твердость измеряли на твердомере марки ТК-2 в соответствии с требованиями ГОСТ 9013-74 при нагрузке 1500 *H*. Результаты обработки полученных данных приведены на рисунке 3.

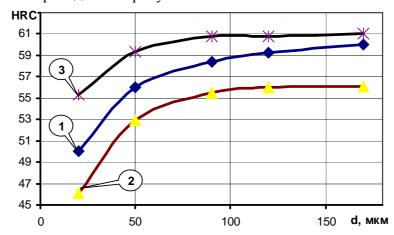


Рис. 3. Влияние гранулометрического состава напыляемого порошка $\Pi\Gamma$ -10H-01 на твердость покрытия: $1-MA\Phi$; 2- ацетилен; 3- пропан-бутан

Более высокая твердость покрытий, полученных с применением пропан-бутана, объясняется более "мягким" температурным режимом напыления, который в меньшей мере вли-

яет на изменение химического состава компонентов, определяющих твердость наносимого покрытия. Твердость покрытий при использовании в качестве горючего газа МАФ занимает промежуточное место между ацетиленом и пропан-бутаном. Интенсивнее подвергаются температурному воздействию порошки грануляцией до 60 мкм. Твердость покрытий, полученных с применением порошков этих фракций, в зависимости от вида горючего газа, изменяется на 4...10 единиц HRC. По мере увеличения грануляции изменения твердости менее выражены и разница с основной фракцией (60 мкм) составляет 1...4 единицы HRC.

Выводы. Проведенные испытания показали, что использование в качестве горючего газа пропан-бутана целесообразно при напылении самофлюсующихся порошков грануляции $60...\ 100\ мкм$, газа МАФ и ацетилена $-70...\ 120\ мкм$.

Средняя твердость покрытий из ПГ-10H-01 несколько выше при напылении пропан-буганом по сравнению с использованием ацетилена и МАФ и составляет 390 $M\Pi a$, что позволяет сделать заключение о высокой динамической прочности сцепления покрытия с основой.

Анализ проведенной работы показывает, что газопламенное напыление с использованием газа МАФ позволяет получать покрытия не хуже, чем при использовании в качестве горючих газов ацетилена или пропан-бутана. Но стоит помнить, что балон газа МАФ заменяет 3...4 балона ацетилена или 160...200 кг карбида кальция.

Список использованных источников

- 1. Газотермические покрытия из порошковых материалов / Ю. С. Борисов, Ю. А. Харламов, С. Л. Сидоренко, Е. А. Ардатовская. К.: Наукова думка, 1987. 543 с.
- 2. Демченко Ю. В. О возможности применения газа МАФ для сварки газопроводов низкого давления / Ю. В. Демченко, А. О. Петренко // Сварщик. 2002. № 4 (26). С. 51-52.
- 3. Дубовой А. Н. Повышение коэффициента использования материала при газотермическом напылении самофлюсующего сплава / А. Н. Дубовой, Л. Н. Симаненков, В. В. Спихтаренко // Зб. наук. праць УДМТУ. -2003. -№ 2 (388). C. 37-41.
- 4. Дубовой А. Н. Повышение эффективности напыления и износостойкости покрытий / А. Н. Дубовой, В. В. Спихтаренко, Э. Б. Хачатуров // Триботехнология судового машиностроения: сборник научных трудов. Николаев: НКИ, 1990. С. 19-23.
- 5. Линник В. А. Современная техника газотермического нанесения покрытий / В. А. Линник, П. Ю. Пекшев. М.: Машиностроение, 1985. 128 с.
- 6. Порошки литые на основе кобальта, никеля, меди [Электронный ресурс]. Режим доступа: http://tverdosplav.com.ua/prod4.html.
- 7. Силуянов В. П. Разработка и широкое внедрение комплектов оборудования для ресурсосберегающих технологий восстановления и упрочнения деталей газопламенной наплавкой. Обзорная информ. Госагропром СССР / В. П. Силуянов, В. П. Лялякин, Е. П. Максимов. М.: АгроНИИТЭИИТО, 1987. 24 с.
- 8. Структура и свойства покрытий из никелевых сплавов / В. П. Безбородов, Д. Д. Зорин, А. А. Муратов и др. // Сварочное производство. -2003. -№ 3. -ℂ. 22-27.